SOUTHERN RAILWAY

Question paper for selection to the post of Teacher Grade II / Maths

Date: 07.09.2012 Total Marks: 100 Duration: 3 hours

INSTRUCTION TO CANDIDATES

- 1. Ensure the answer booklet contains 12 sheets duly stamped and signed in each page.
- 2. Electronics gadgets such as Cell Phones, Pagers, Calculators etc. are not permitted inside the Examination Hall.
- 3. Use only Black or Blue Pens to write the answers.
- 4. Hand writing should be neat and legible.
- 5. Corrections or overwriting of any type in the answers of Objective Type Questions are not permitted.
- 6. Do not write your name or mark any signs in any part of answer booklet except in the space provided in the Fly Leaf at cover page.

TEACHER GRADE - II SELECTION EXAMINATION **MATHEMATICS**

Time: 3 hours Max.Marks: 100 SECTION – A (50x1=50)Answer ALL the questions Choose the correct answer. 1. If n(A) = 20, n(B) = 25 and $n(A \cup B) = 40$, then $n(A \setminus B)$ is equal to b) 5 c) 20 2. For any two sets A and B, $\{(A \setminus B) \cup (B \setminus A)\} \cap (A \cap B) =$ c) $A \cap B$ b) $A \cup B$ a)Ø 3. $A = \{1, 3, 4, 7, 11\}, B = \{-1, 1, 2, 7\}$ and $f : A \rightarrow B$ is given by $f = \{(1,-1),(3,2),(4,1),(7,2),(11,7)\}$. Then f is a) one to one b) onto c) bijective 4. If $f: A \to B$ is onto and if n(A) = 5, then n(B) is b) = 55. If the 3rd term of a G.P is 2, then the product of first 5 terms is a) 5^{2} b) 2⁵ c)106. If a,b,c are in A.P, then $\frac{b-a}{c-a}$ = b) $\frac{1}{2}$ a) 1 7. If 2+3+...+n=k, then $1^3+2^3+3^3+...+n^3=$ a) $\left\{ \frac{n(n-1)}{2} \right\}^2$ b) k^2 c) $(k+1)^2$ 8. $\sum_{k=1}^{n} (2k-1) =$ a) $\frac{n(n+1)}{2}$ b) n^2 c) $\frac{n(n+1)}{4}$ 9. If the system 6x-2y=3, kx-y=2 has unique solution, then b) $k - 3 \neq 0$ c) $k \neq 4$ 10. The quadratic equation whose roots are reciprocals of the roots of the equation $4x^2 - 3x - 1 = 0$ is b) $4x^2 + 3x + 1 = 0$ c) $x^2 - 3x + 4 = 0$ a) $x^2 + 3x - 4 = 0$ 11. If $x^2 + 5kx + 16 = 0$ has no real roots, then b) $\frac{-8}{5} < k < \frac{8}{5}$ c) $0 < k < \frac{8}{5}$ a) $k > \frac{8}{5}$ 12. The GCD of $x^2 - 2xy + y^2$ and $x^4 - y^4$ is a) $x^2 - v^2$

b) x + y

c) x - y

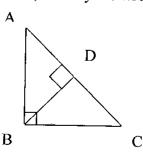
13. Which of the following is incorrect.

a)
$$(A+B)^T = B^T + A^T$$
 b) $(A^T)^T = A$ c) $(AB)^T = A^T B^T$

b)
$$(A^T)^T = A$$

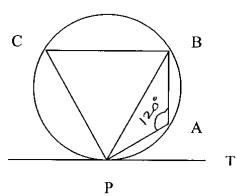
c)
$$(AB)^T = A^T B^T$$

- 14. If $A \times \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 \end{pmatrix}$, then the order of A is
 - a) 2×1

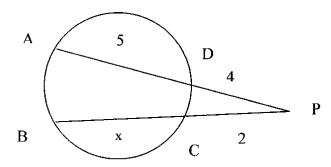

- 15. Which of the following statements is not true
 - a) A diagonal matrix is a square matrix
 - b) A scalar matrix is a diagonal matrix
 - c) A diagonal matrix is a scalar matrix
- 16. If the line segment joining the points (3,4) and (14, -3) meet the x-axis at P, then the ratio in which P divides the segment AB is
 - a) 4:3
- b) 2:3
- c) 3:4
- 17. The equation of line through the point (-3, 4) and parallel to y axis is
 - a) v + 3 = 0
- b) x + 3 = 0
- 18. The two straight lines $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ are parallel if

a)
$$\frac{a_1}{b_1} = \frac{a_2}{b_2}$$

b)
$$\frac{a_2}{a_1} = \frac{b_1}{b_2}$$


a)
$$\frac{a_1}{b_1} = \frac{a_2}{b_2}$$
 b) $\frac{a_2}{a_1} = \frac{b_1}{b_2}$ c) $a_1 a_2 + b_1 b_2 = 0$

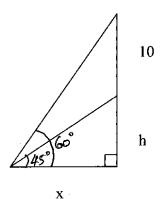
- 19. Area of the triangle whose vertices are (1, 2), (-3, 4) and (-5, -6) is
- b) 44
- c) 22
- 20. The centre of a circle is (-6, 4). If one end of a diameter is (-12, 8), then the other end is
 - a) (-9, 2)
- b) (0, 6)
- c)(0,0)
- 21. If the points (2, 5), (4, 6) and (a, a) are collinear, then the value of a is a) 8 c) - 8
- 22. In triangle PQR, RS is the bisector of $\angle R$. If PQ = 6 cm, QR = 8 cm and RP = 4 cm, then PS =
 - a) 4 cm
- b) 2 cm '
- c) 3 cm
- 23. From the figure given below, identify the wrong statement



- a) \triangle ABD \sim \triangle ABC b) \triangle BDC \sim \triangle ABC c) \triangle ADB \sim \triangle BDC
- 24. The perimeter of two similar triangles are 24 cm and 18 cm respectively. If one side of the first triangle is 8 cm, then the corresponding side of the other triangle is
 - a) 6 cm
- b) 3 cm
- c) 9 cm

25. In the following figure $\angle BPT =$

- a) 120°
- b) 30°
- c) 60°
- 26. The value of x in the following diagram is


- a) $\frac{5}{2}$
- b) 10
- c) 16

$$27. \ 1 - \frac{\sin^2 \theta}{1 + \cos \theta} =$$

- a) $\sin \theta$
- b) $\cos \theta$
- c) $\tan \theta$

- 28. $\cos^4 x \sin^4 x =$
 - a) $2\sin^2 x 1$
- b) $2\cos^2 x + 1$
- c) $1 2\sin^2 x$
- 29. $(1 + \tan^2 \theta)(1 \sin \theta)(1 + \sin \theta) =$
 - a) $\cos^2 \theta \sin^2 \theta$
- b) $\sin^2\theta + \cos^2\theta$
- c) $\sin^2 \theta \cos^2 \theta$

30. The value of h in the following figure is

a)	5 (√3	⊥1 \
a)	$\mathcal{I}(\sqrt{3})$	+1)

b)
$$\sqrt{3}$$

c)
$$\frac{10}{\sqrt{3}+1}$$

- 31. The total surface area of a solid right circular cylinder whose radius is half of its height is equal to
 - a) $\frac{3}{2}\pi h$ sq.units b) $\frac{3}{2}\pi h^2$ sq.units c) $\frac{2}{3}\pi h^2$ sq.units
- 32. If the volumes of two spheres are in the ratio 27: 125, then the ratio of their surface areas is
 - a) 25:9
- b) 3:5
- c) 9:25
- 33. The surface area of a sphere is 24 cm². If the sphere is divided into two hemispheres, then the total surface area of one hemisphere is
 - a) 18 cm²
- b)16 cm²
- c) 12 cm^2
- 34. Two right circular cones have equal radii. If their slant heights are in the ratio 4:3, then their respective curved surface areas are in the ratio
 - a) 16:9
- b) 3:4
- c) 4:3
- 35. The graph of $y = 2x^2$ is symmetrical about
 - a) the line x = 0
- b) the x-axis
- c) the line x = y
- 36. The graph of $y = -3x^2$ does not lie
 - a) above the x-axis
- b) below the x-axis
- c) to the right of the y-axis
- 37. When the variables are in indirect variation, the graph is
 - a) a parabola
- b) a circle
- c) a rectangular hyperbola
- 38. For any collection of n terms $(\sum x) \overline{x} =$
- b) (n-1)x
- c) 0
- 39. The variance of first 11 natural numbers is
 - a) 10
- b) $\sqrt{10}$
- c) $5\sqrt{2}$
- 40. The standard deviation of a data is $2\sqrt{2}$. If each value is multiplied by 3, then the standard deviation of the new data is
 - a) $\sqrt{12}$
- b) $2\sqrt{6}$
- c) $6\sqrt{2}$

41	. If t is the standard dev z+3 is	viation of x, y, z, then	the standard deviation of x+3, y+3,	
	a) $t - 3$	b) 3t	c) t	
42	Given $\sum (x-\overline{x})^2 = 4$	18, $\bar{x} = 20$ and $n = 12$,	the coefficient of variation is	
	a) 20 .		c) 1000	
43	. If A and B are any tw	o events, then $P(A \cap A)$	$\overline{B}) =$	
			c) $P(A \cup B) - P(A \cap B)$	
44	. If $P(A) = 0.25$, $P(B) =$	= 0.50 and $P(A \cap B)$ =	0.14, then P(neither A nor B) =	
	a)0.39	b) 0.61	c) 0.25	
45		_	53 Sundays and 53 Mondays is	
	a) $\frac{1}{7}$	b) $\frac{2}{7}$	c) 0	
Fill in	the blanks	7		
47. 48. 49.	. The official language . The first chairman of t	enlisted in the eighth s of Union of India is the Official Language of the authority who is t	Commission is translating the statutory rules,	_
A		SETION	– B	
Allswe	er any FIVE questions	S	(5x10=50))
	-		(5x10=50	
	a) Find value of 1+11-	+111+to 20 terms	(5x10=50	
	a) Find value of $1+11+1$ b) If S_1, S_2 and S_3 are	+111+to 20 terms the sum of first n, 2n a	(5x10=50) and 3n terms of a geometric series	5)
51.	a) Find value of $1+11+1$ b) If S_1 , S_2 and S_3 are respectively, then show a) Two trains leave a r West and the second tr second train. If after tw each train.	+11I+to 20 terms the sum of first n, 2n as we that $S_1(S_3 - S_2) = (S_3)$ railway station at the sa rain due North. The first two hours, they are 50 km.	(5x10=50) and 3n terms of a geometric series $(S_2 - S_1)^2$ time time. The first train travels due st train travels 5 km/hr faster than the time apart, find the average speed of (5)	5) 6
51. 52.	a) Find value of $1+11+1$ b) If S_1 , S_2 and S_3 are respectively, then show a) Two trains leave a r West and the second tr second train. If after tw each train. b) If α and β are the	+111+to 20 terms the sum of first n, 2n as w that $S_1(S_3 - S_2) = (S_3)$ railway station at the sa rain due North. The first two hours, they are 50 k	(5x10=50) and 3n terms of a geometric series $(S_2 - S_1)^2$ time time. The first train travels due st train travels 5 km/hr faster than the time apart, find the average speed of	5) 6
51. 52.	a) Find value of 1+11+15 b) If S_1 , S_2 and S_3 are respectively, then show a) Two trains leave a r. West and the second train. If after tweach train. b) If α and β are the whose roots are $\frac{\alpha^2}{\beta}$ and	+111+to 20 terms the sum of first n, 2n as we that $S_1(S_3 - S_2) = (S_3)$ railway station at the sarain due North. The first wo hours, they are 50 km roots of the equation S_3 and $\frac{\beta^2}{\alpha}$.	(5x10=50) and 3n terms of a geometric series $S_2 - S_1)^2$ (5) time time. The first train travels due st train travels 5 km/hr faster than the time apart, find the average speed of (5) $3x^2 - 4x + 1 = 0$, form the equation (5)) 6) 6
51. 52.	a) Find value of 1+11+15 b) If S_1 , S_2 and S_3 are respectively, then show a) Two trains leave a r. West and the second train. If after tweach train. b) If α and β are the whose roots are $\frac{\alpha^2}{\beta}$ and a) Find the coordinates straight line $3x + 2y =$	+111+to 20 terms the sum of first n, 2n as we that $S_1(S_3 - S_2) = (S_3)$ railway station at the sarain due North. The first wo hours, they are 50 km roots of the equation $\frac{1}{2}$ and $\frac{1}{2}$ sof the foot of the perpendicular.	(5x10=50) and 3n terms of a geometric series $S_2 - S_1)^2$ (5) ame time. The first train travels due st train travels 5 km/hr faster than the train apart, find the average speed of $(5x^2 - 4x + 1 = 0)$ (5) be endicular from the origin on the	5) e)
51. 52.	a) Find value of $1+11+1$ b) If S_1 , S_2 and S_3 are respectively, then show a) Two trains leave a respectively, then show a) Two trains leave a respectively. West and the second transecond train. If after two each train. b) If α and β are the whose roots are $\frac{\alpha^2}{\beta}$ and a) Find the coordinates straight line $3x + 2y = $ b) Find the equations of	+111+to 20 terms the sum of first n, 2n a w that $S_1(S_3 - S_2) = (S_3)$ railway station at the sa rain due North. The first two hours, they are 50 k roots of the equation 3 and $\frac{\beta^2}{\alpha}$. Is of the foot of the perp 13.	(5x10=50) and 3n terms of a geometric series $(S_2 - S_1)^2$ (5) the time. The first train travels due st train travels 5 km/hr faster than the strain travels 5 km/hr faster than the strain apart, find the average speed of $(S_1 - A_2 + A_3 + A_4) = 0$, form the equation (5) condicular from the origin on the (4) th passing through the point $(6, -2)$	(5) (5) (6) (7)
51.52.53.54.	a) Find value of $1+11+1$ b) If S_1 , S_2 and S_3 are respectively, then show a) Two trains leave a r. West and the second train. If after tweach train. b) If α and β are the whose roots are $\frac{\alpha^2}{\beta}$ and a) Find the coordinates straight line $3x + 2y =$ b) Find the equations of and whose sum of interact a) D is the mid point of and on AC such that D parallel to BC.	the sum of first n, 2n as we that $S_1(S_3 - S_2) = (S_3)$ railway station at the sarain due North. The first wo hours, they are 50 km roots of the equation $\frac{\beta^2}{\alpha}$. So of the foot of the perpension of the straight lines each recepts is 5. If the side BC of triangle P bisects $\angle BDA$ and D	(5x10=50) and 3n terms of a geometric series $S_2 - S_1)^2$ (5) ame time. The first train travels due st train travels 5 km/hr faster than the train apart, find the average speed of $(5x^2 - 4x + 1 = 0)$ (5) be endicular from the origin on the	(5) (5) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7

- 55. a) Prove that (1 + cot θ cos ecθ)(1 + tan θ + sec θ) = 2.
 b) A straight highway leads to the foot of a tower. A man standing on the top of the tower spots a van at an angle of depression of 30°. The van is approaching the tower with a uniform speed. After 6 minutes, the angle of depression of the van is found to be 60°. How many more minutes will it take for the van to reach the tower.
 (5)
- 56. a) An iron right circular cone of diameter 8 cm and height 12 cm is melted and recast into spherical lead shots each of radius 4 mm. How many lead shots can be made.
 - b) The mean and variance of 20 items are found to be 10 and 4 respectively. At the time of checking it was found that an item 12 was wrongly entered as 8. Calculate the correct mean and variance. (6)
- 57. a) A basket contains 20 apples and 10 oranges out of which 5 apples and 3 oranges are rotten. If a person takes out one fruit at random, find the probability that the fruit is either an apple or a good fruit. (5)

b) Match the following:

1. The year in which the Official Languages rules was passed	A. 1955
2. A state in which Urdu is declared as official language	B. Jammu & Kashmir
3. A state with official language as English	C. 1976
4. In compliance of Article 344 the Official Languages Commission was formed in the year	D. Andhra Pradesh
5. The state in which Sections 6 & 7 of Official Languages Act 1963 do not apply	E. Arunachal Pradesh

(5)